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The rare decay B → π`+`− arises from b → d flavor-changing neutral currents and could be
sensitive to physics beyond the Standard Model. Here, we present the first ab-initio QCD calculation
of the B → π tensor form factor fT . Together with the vector and scalar form factors f+ and f0
from our companion work [J. A. Bailey et al., Phys. Rev. D 92, 014024 (2015)], these parameterize
the hadronic contribution to B → π semileptonic decays in any extension of the Standard Model.
We obtain the total branching ratio BR(B+ → π+µ+µ−) = 20.4(2.1)×10−9 in the Standard Model,
which is the most precise theoretical determination to date, and agrees with the recent measurement
from the LHCb experiment [R. Aaij et al., JHEP 1212, 125 (2012)]. Note added: after this paper
was submitted for publication, LHCb announced a new measurement of the differential decay rate for
this process [T. Tekampe, talk at DPF 2015], which we now compare to the shape and normalization
of the Standard-Model prediction.

PACS numbers: 13.20.He, 12.38.Gc, 12.15.Mm

Motivation — Hadron decays that proceed through
flavor-changing neutral currents may be sensitive to new
physics, because their leading Standard-Model contribu-
tions are loop suppressed. Here we study the semilep-
tonic decay B → π`+`−, which proceeds through a
b → d transition. Hadronic effects in this decay are
parametrized by three form factors. In this Letter, we
present the first ab-initio QCD calculation of the ten-
sor form factor fT , based on lattice-QCD work that
also yielded the vector and scalar form factors, f+ and
f0 [1]. Lattice QCD has several advantages over other
approaches to the form factors [2–9], particularly in pro-
viding a path to controlled uncertainties that can be sys-
tematically reduced [10].

The LHCb experiment recently made the first obser-
vation of B+ → π+µ+µ− [11], while the B-factories
have set limits on the e+e− and τ+τ− channels [12–14].
Below we present the first calculations of B → π`+`−

(` = e, µ, τ) observables in the Standard Model using

form factors with fully controlled uncertainties.

The form factors f+, f0, and fT suffice to parame-
terize B → π decays in all extensions of the Standard
Model. New physics from heavy particles—such as those
appearing in models with supersymmetry [3, 15–17], a
fourth generation [18], or extended [15, 19–23] or com-
posite [24] Higgs sectors—alter Wilson coefficients in the
effective Hamiltonian pertaining to particle physics below
the electroweak scale [25–28]. Whatever these unknown
particles may be, the hadronic physics remains the same.

Lattice-QCD calculation — Our work on fT (q2) was
carried out in parallel with f+(q2) and f0(q2). Our aim
in Ref. [1] was a precise determination of the Cabibbo-
Kobayashi-Maskawa (CKM) element |Vub|, and every
step of the analysis was subjected to many tests. Fur-
ther, two of the authors applied a multiplicative offset
to the numerical data at an early stage. This “blinding”
factor was disclosed to the others only after finalizing the
error analysis. Full details of the simulation parameters,

ar
X

iv
:1

50
7.

01
61

8v
3 

 [
he

p-
ph

] 
 1

3 
A

ug
 2

01
5

FERMILAB-PUB-15-288-T (accepted)



2

analysis, and cross-checks are given in Ref. [1].
Our calculation uses ensembles of lattice gauge-field

configurations [29] from the MILC Collaboration [30–32],
which are generated with a realistic sea of up, down, and
strange quarks. In practice, the up and down sea quarks
have the same mass, and the strange-quark mass is tuned
close to its physical value. The statistics are high, with
600–2200 gauge-field configurations per ensemble. The
physical volume is large enough that we can repeat the
calculation in different parts of the lattice, thereby qua-
drupling the statistics. We use four lattice spacings rang-
ing from 0.12 fm to 0.045 fm to control the extrapolation
to zero lattice spacing.

The tensor form factor is defined via the matrix ele-
ment of the b→ d tensor current id̄σµνb:

〈π(pπ)|id̄σµνb|B(pB)〉 = 2
pµBp

ν
π − pνBpµπ

MB +Mπ
fT (q2), (1)

where pB and pπ are the particles’ momenta and q =
pB−pπ is the momentum carried off by the leptons. The
Lorentz invariant q2 is related to the pion energy in the
B-meson rest frame via Eπ = (M2

B +M2
π − q2)/2MB . In

the finite volume that can be simulated on a computer,
Eπ takes discrete values, dictated by the spatial mo-
menta pπ compatible with periodic boundary conditions.
Because statistical and discretization errors increase with
pion momentum, we restrict |pπ| ≤ |2π(1, 1, 1)/L|. The
resulting simulation range of Eπ . 1 GeV is signifi-
cantly smaller than the kinematically allowed range of
Eπ ≤ 2.5 GeV. Extending this discrete set of calcula-
tions into the full q2 dependence is the central challenge
of this work, and is met in two steps.

The two light quarks (up and down) have a mass larger
than it should be, but the range simulated is wide and
the smallest pion mass is 175 MeV, close to Nature’s
140 MeV. Therefore, we can apply an effective field the-
ory of pions—chiral perturbation theory—to extrapolate
the simulation data to the physical point. We use a form
of chiral perturbation theory adapted to lattice QCD,
with additional terms describing the lattice-spacing de-
pendence [33, 34] and with modifications needed for en-
ergetic final-state pions [35]. As discussed in Ref. [1], we
try several fit variations. For example, we replace the
loop integrals with momentum sums appropriate to the
finite volume, finding negligible changes in the results.
Our final fit includes next-to-next-to-next-to-leading or-
der analytic terms and terms to model the discretization
errors of the heavy quark. The latter come from an ef-
fective field theory for heavy b quarks [36–38].

Figure 1 shows the q2 dependence of the errors after the
chiral-continuum extrapolation just described. Table I
gives a numerical error budget for fT (q2 = 20 GeV2).
The largest uncertainty comes from the statistical errors,
as increased during the chiral-continuum extrapolation.
This error is under good control for q2 corresponding to
the spatial momenta that we simulate, but grows large

TABLE I. Error budget in per cent for fT (q2 = 20 GeV2).
The first error incorporates statistical errors from the simu-
lation and systematics associated with the chiral-continuum
fit. The last column emphasizes how the error varies with q2.

Source of error δfT q2 dependence
Statistics ⊕ χPT ⊕ HQ ⊕ gπ 3.8 important
Scale r1 0.5 negligible
Nonperturbative matching ZV 4

bb
, ZV 4

ll
0.7 negligible

Perturbative matching ρT 2.0 none
Heavy-quark mass tuning κb 0.4 none
Light-quark mass tuning ml,ms 0.5 negligible
Total (Quadrature sum of above) 4.4 important

elsewhere.

The subdominant errors are as follows. To convert
from lattice units to physical units, we introduce a
physical distance r1, which is defined via the force be-
tween static quarks [39, 40]. We use it to form physi-
cal, dimensionless quantities, which are the input data
for the chiral-continuum fit. At the end, we set r1 =
0.3117 ± 0.0022 fm [41] based on a related lattice-QCD
calculation of r1fπ [42] and the pion decay constant
fπ = 130.41 MeV [43]. To propagate the parametric
uncertainty in r1 to fT , we repeat the fit shifting r1 by
±1σr1 , leading to the second line in Table I.

In lattice gauge theory, the tensor current does not
have the normalization used in QCD phenomenology. We
obtain most of the normalization nonperturbatively [44]
from b→ b and d→ d transitions with the vector current,
with statistical errors below 1%. Another matching fac-
tor ρT remains, but, by design and in practice, it is close
to unity. We calculate ρT at the renormalization scale
µ = mb,pole through first order in the QCD coupling αs.
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FIG. 1. (color online) Error budget for fT as a function of q2

for the range of simulated lattice momenta. The filled bands
show the relative size of each error contribution to the total.
The quadrature sum is shown on the left y axis and the error
itself, in per cent, on the right.
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We estimate the resulting error of order α2
s after remov-

ing a logarithmic dependence on the matching scale µ,
which is present in continuum QCD too. We then exam-
ine how the one-loop coefficient depends on heavy-quark

mass, identifying the largest value, ρ
[1]
T,max. Finally, we

estimate the error in ρT to be 2α2
s|ρ[1]T,max|, evaluating αs

on the second-finest lattice with a ≈ 0.06 fm. This yields
the 2% perturbative-matching uncertainty in Table I.

The last two uncertainties arise as follows. When gen-
erating data, we choose the simulation quark masses
based on short runs and previous experience. The full
analysis yields better estimates. To correct the simu-
lation b-quark mass a posteriori, we recompute fT on
one ensemble with two additional values of the bare b-
quark mass. Using the slope from all three mass values,
we interpolate the data for fT slightly from the produc-
tion b-quark mass to the physical value. This leaves an
error due to the uncertainty in the size of the b-quark
mass correction. The details for fT are nearly identical
to those for f+ [1], leading to the same estimate, 0.4%,
for this error. The light-quark mass dependence is em-
bedded in the chiral-continuum extrapolation, described
above. The parametric uncertainty from the input light-
quark mass [32] is propagated to fT by repeating the fit
with ±1σmq

shifts to these parameters, and is given in
the penultimate line of Table I.

The final line in Table I and the upper edge of the stack
in Fig. 1 represent the quadrature sum of the systematic
uncertainties with the chiral-continuum fit error.

Extension to all q2 — To extend fT in the chiral-
continuum limit from the range of simulated lattice mo-
menta to the full kinematic range, 0 < q2 ≤ (MB−Mπ)2,
with controlled errors, we use a method based on the an-
alytic structure of the form factor.

In the complex q2 plane, fT (q2) has a cut for timelike
q2 ≥ t+ ≡ (MB + Mπ)2 and a pole at q2 = M2

B∗ but is
analytic elsewhere. The variable

z(q2, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

(2)

maps the whole q2 plane into the unit disk, with the
cut mapped to the boundary and the semileptonic region
mapped to an interval on the real axis. Unitarity bounds
then guarantee that an expansion of fT in z (with the B∗

pole removed) converges for |z| < 1 [45–48]. Following
Bourrely, Caprini, and Lellouch (BCL) [49], we factor out
the B∗ pole and expand in z:

(1− q2/M2
B∗)fT (z) =

Nz−1∑
n=0

bTn

[
zn − (−1)n−Nz

n

Nz
zNz

]
,

(3)
choosing t0 = (MB+Mπ)(

√
MB−

√
Mπ)2 to minimize |z|

in the semileptonic region. Although Eq. (3) was derived
for the vector form factor f+, we use it for the tensor form

TABLE II. Best-fit values bn with total errors and correlation
matrix ρnm of the Nz = 4 BCL z expansion of fT . The lower
two panels show correlations with the f+ and f0 coefficients
in Table XIV of Ref. [1] obtained from ab-initio QCD.

Fit: 0.393(17) −0.65(23) −0.6(1.5) 0.1(2.8)

ρ bT0 bT1 bT2 bT3
bT0 1.000 0.400 0.204 0.166
bT1 1.000 0.862 0.806
bT2 1.000 0.989
bT3 1.000

b+0 0.638 0.321 0.123 0.084
b+1 0.321 0.397 0.162 0.109
b+2 0.114 0.202 0.198 0.179
b+3 0.070 0.152 0.192 0.180
b00 0.331 0.136 0.089 0.073
b01 0.203 0.313 0.198 0.162
b02 0.204 0.268 0.186 0.155
b03 0.151 0.203 0.169 0.149

factor fT because the two form factors are proportional
to each other at leading order in the 1/mb expansion.

We determine the bTn with a functional method
connecting the independent functions of the chiral-
continuum fit with the first several powers of z [1]. Our
preferred fit uses Nz = 4; adding higher-order terms in
z does not significantly change the central value. Ta-
ble II presents our final result for fT as coefficients of
the Nz = 4 BCL z fit and the correlation matrix be-
tween them, where the errors include statistical and all
systematic uncertainties. This information can be used
to reconstruct fT (q2) over the full kinematic range. Ta-
ble II also provides the (mostly statistical) correlations
between fT , f+, and f0. Figure 2 shows the extrapola-
tion of fT to q2 = 0. Table II and Fig. 2 represent the
first main result of this Letter.

Implications — The largest contribution in the Stan-
dard Model to the amplitude for B → π`+`− is pro-
portional to the vector form factor. Assuming that new
physics does not contribute significantly to the tree-level
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FIG. 2. Ab-initio result for fT (q2) from lattice QCD.
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TABLE III. Correlations between BCL coefficients for fT with
those for f+ and f0 from Table XIX of Ref. [1], which include
experimental shape information from B → π`ν decay.

ρ bT0 bT1 bT2 bT3
b+0 0.514 0.140 0.078 0.065
b+1 0.111 0.221 −0.010 −0.049
b+2 −0.271 −0.232 −0.012 0.029
b+3 −0.204 −0.215 −0.013 0.023
b00 0.243 −0.015 −0.025 −0.024
b01 0.005 0.134 0.070 0.057
b02 −0.002 −0.034 −0.032 −0.030
b03 −0.044 −0.061 0.005 0.017

decay B → π`ν, one can use experimental measurements
of this process to constrain the shape of f+(q2), especially
at low q2. In Ref. [1], we obtain the CKM element |Vub|
from a combined z fit to our lattice-QCD results for f+
and f0 and measurements of τBdΓ(B → π`ν)/dq2 from
BaBar [50, 51] and Belle [52, 53]. This joint fit also yields
the most precise current determinations of f+ and f0. To
enable them to be combined with the results for fT from
Table II, Table III provides the correlations between the
z-expansion coefficients for all three form factors. The
correlations are small, because f+ contains independent
experimental information.

Using fT from this work and f+ and f0 just described,
we show the Standard-Model partial branching fractions
for B → π`+`− in Fig. 3. Other ingredients are needed
besides the form factors. We take the Wilson coefficients
from Ref. [27], the CKM elements from Ref. [55], the me-
son masses and lifetimes from Ref. [43], and the b- and
c-quark masses from Ref. [7]. To calculate contributions
that cannot be parameterized by the form factors, we em-
ploy QCD factorization at low q2 [56–64] and an operator

product expansion (OPE) in powers of Eπ/
√
q2 at large

q2 [65–72]. Full details will be provided in Ref. [73].
Table IV presents numerical predictions for selected

q2 bins. The last error in parenthesis contains effects
of parametric uncertainties in αs, mt, mb, mc; of miss-
ing power corrections, taking 10% of contributions not
directly proportional to the form factors; and of vio-
lations of quark-hadron duality, estimated to be 2% at
high-q2 [70]. At low q2, the uncertainty predominantly
stems from the form factors; at high q2, the CKM ele-
ments |V ∗tdVtb| and form factors each contribute similar
errors. Figure 3 and Table IV represent the second main
result of this Letter.

In the regions q2 . 1 GeV2 and 6 GeV2 . q2 .
14 GeV2, uū and cc̄ resonances dominate the rate. To
estimate the total BR, we simply disregard them and in-
terpolate linearly in q2 between the QCD-factorization
result at q2 ≈ 8.5 GeV2 and the OPE result at
q2 ≈ 13 GeV2. While this treatment does not yield
the full branching ratio, it does enable a comparison
with LHCb’s published result, BR(B+ → π+µ+µ−) =
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FIG. 3. (color online) Partial branching fractions for B+ →
π+µ+µ− (upper panel) and B+ → π+τ+τ− (lower panel) out-
side the resonance regions. Different patterns (colors) show
the contributions from the main sources of uncertainty; those
from the remaining sources are too small to be visible. For
B+ → π+µ+µ−, new measurements from LHCb [54], which
were announced after our paper appeared, are overlaid.

TABLE IV. Standard-Model predictions for B+ → π+`+`−

partial branching fractions. Those for B0 decays can be ob-
tained by multiplying by the lifetime ratio (τB0/τB+)/2 =
0.463. Errors shown are from the CKM elements, form fac-
tors, variation of the high and low matching scales, and the
quadrature sum of all other contributions, respectively.

[q2min, q
2
max] 109 × BR(B+ → π+`+`−)

(GeV2) ` = e, µ ` = τ
[0.1, 2.0] 1.81(11,24,6,2)
[2.0, 4.0] 1.92(11,22,6,3)
[4.0, 6.0] 1.91(11,20,6,3)
[6.0, 8.0] 1.89(11,18,5,3)
[15, 17] 1.69(10,13,3,5) 1.11(7,8,2,4)
[17, 19] 1.52(9,10,2,4) 1.25(8,8,2,3)
[19, 22] 1.84(11,11,3,5) 1.93(12,10,4,5)
[22, 25] 1.07(6,6,3,3) 1.59(10,7,4,4)
[1, 6] 4.78(29,54,15,6)

[15, 22] 5.05(30,34,7,15) 4.29(26,25,7,12)
[4m2

` , 26.4] 20.4(1.2,1.6,0.3,0.5)

23(6)× 10−9 [11], which was obtained from a similar in-
terpolation over these regions. Our result BR(B+ →
π+µ+µ−) = 20.4(2.1) × 10−9 agrees with LHCb, and
is more precise than the best previous theoretical esti-
mate [7] because we use fT directly, which avoids a large
uncertainty from varying the matching scale µ.
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Outlook – The largest uncertainty in our determi-
nation of the B → π form factors is the combined
error from statistics with chiral-extrapolation and dis-
cretization effects included. We will be able to re-
duce these with calculations on the MILC Collabora-
tion’s recently generated four-flavor ensembles with phys-
ical light-quark masses [74]. LHCb’s measurement of
BR(B+ → π+µ+µ−) will improve, and Belle II expects
to observe the neutral decay mode B0 → π0`+`−. If a
deviation from the Standard Model is observed, our form
factors can be used to compute other observables such as
asymmetries, thereby providing information about new
heavy particles, such as their masses, spin, and couplings.

Note added: after this paper was submitted for publi-
cation, the LHCb experiment announced a new measure-
ment for the B+ → π+µ+µ− differential decay rate [54].
The new results are shown in Fig. 3. The large differ-
ence in the lowest q2 bin is due to the presence of light
(ρ, ω, φ) resonances, whose effects are important but can-
not be estimated in a model-independent manner. Given
the present experimental and theoretical uncertainties, it
is too early to discern possible new-physics contributions
to this process.
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